Frontal Association Cortex Is Engaged in Stimulus Integration during Associative Learning

نویسندگان

  • Daisuke Nakayama
  • Zohal Baraki
  • Kousuke Onoue
  • Yuji Ikegaya
  • Norio Matsuki
  • Hiroshi Nomura
چکیده

The frontal association cortex (FrA) is implicated in higher brain function. Aberrant FrA activity is likely to be involved in dementia pathology. However, the functional circuits both within the FrA and with other regions are unclear. A recent study showed that inactivation of the FrA impairs memory consolidation of an auditory fear conditioning in young mice. In addition, dendritic spine remodeling of FrA neurons is sensitive to paired sensory stimuli that produce associative memory. These findings suggest that the FrA is engaged in neural processes critical to associative learning. Here we characterize stimulus integration in the mouse FrA during associative learning. We experimentally separated contextual fear conditioning into context exposure and shock, and found that memory formation requires protein synthesis associated with both context exposure and shock in the FrA. Both context exposure and shock trigger Arc, an activity-dependent immediate-early gene, expression in the FrA, and a subset of FrA neurons was dually activated by both stimuli. In addition, we found that the FrA receives projections from the perirhinal (PRh) and insular (IC) cortices and basolateral amygdala (BLA), which are implicated in context and shock encoding. PRh and IC neurons projecting to the FrA were activated by context exposure and shock, respectively. Arc expression in the FrA associated with context exposure and shock depended on PRh activity and both IC and BLA activities, respectively. These findings indicate that the FrA is engaged in stimulus integration and contributes to memory formation in associative learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task-dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on response restrictions but to a greater extent on a...

متن کامل

Neural oscillations during conditional associative learning.

Associative learning requires mapping between complex stimuli and behavioural responses. When multiple stimuli are involved, conditional associative learning is a gradual process with learning based on trial and error. It is established that a distributed network of regions track associative learning, however the role of neural oscillations in human learning remains less clear. Here we used sca...

متن کامل

The neural basis of narrative imagery: emotion and action.

It has been proposed that narrative emotional imagery activates an associative network of stimulus, semantic, and response (procedural) information. In previous research, predicted response components have been demonstrated through psychophysiological methods in peripheral nervous system. Here we investigate central nervous system concomitants of pleasant, neutral, and unpleasant narrative imag...

متن کامل

Associative Fear Learning Enhances Sparse Network Coding in Primary Sensory Cortex

Several models of associative learning predict that stimulus processing changes during association formation. How associative learning reconfigures neural circuits in primary sensory cortex to "learn" associative attributes of a stimulus remains unknown. Using 2-photon in vivo calcium imaging to measure responses of networks of neurons in primary somatosensory cortex, we discovered that associa...

متن کامل

The role of the lateral frontal cortex in causal associative learning: exploring preventative and super-learning.

Prediction error--a mismatch between expected and actual outcome--is critical to associative accounts of inferential learning. However, it has proven difficult to explore the effects of prediction error using functional magnetic resonance imaging (fMRI) while excluding the confounding effects of stimulus novelty and incorrect responses. In this event-related fMRI study we used a three-stage exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015